
Let Xn = SLnZ\SLnR be the space of n-dimensional lattices L, with the probability
Haar measure µ. The goal of this notes is to estimate the average number of LLL bases
of lattices in Xn.

Our strategy is in two steps: first we will slightly tweak the LLL condition into a form
that is more amenable to direct computation, and estimate the average number of this
“modified LLL” bases; then we use this result to deal with real LLL.

Let’s quickly recall the definition of an LLL basis. For vectors x1, . . . , xn ∈ Rn, let x∗i
be the component of xi orthogonal to span(x1, . . . xi−1). Fix constants 1/2 < η ≤ 1 and
1/2 ≤ δ < η. We say x1, . . . , xn form an LLL basis with factor (η, δ) if

(i) det(x1 . . . xn) = 1.
(ii) |µi,j | ≤ δ for all j < i, where µi,j := 〈xi, x∗j 〉/‖x∗j‖2.
(iii) η‖x∗i ‖ ≤ ‖x∗i+1 + µi+1,ix

∗
i ‖ for all i = 1, . . . , n− 1.

In practice, one takes η and δ arbitrarily close to 1 and 1/2, respectively. In this paper,
we will take η = 1 and δ = 1/2 (in doing so we give up the polynomial-time performance
of the LLL algorithm, but since the running time is not of our immediate concern, it does
not matter).

It is condition (iii) that we would like to modify. Let’s say x1, . . . , xn form a Siegel
basis with factor (η, δ) if they satisfy (i), (ii), and

(iii’) η‖x∗i ‖ ≤ ‖x∗i+1‖ for all i = 1, . . . , n− 1.

For Siegel reduction, we will set δ = 1/2 unless otherwise stated, and leave 1/2 < η ≤ 1
arbitrary.

Average number of Siegel bases. Let

ρ(x1, . . . xn) =

{
1 if {x1, . . . , xn} is a Siegel basis

0 otherwise.

Then the average number of Siegel bases can be expressed as the integral∫
Xn

∑[ x1, . . . , xn
forms a basis of L

]
ρ(x1, . . . , xn)dµ.

By an integration formula of Schmidt, this equals

(1)

n∏
j=2

1

ζ(j)

∫
. . .

∫
ρ(x1, . . . , xn−1, t1x1 + . . .+ tn−1xn−1 +x)dt1 . . . dtn−1dx1 . . . dxn−1.

Here x = x(x1, . . . , xn−1) is any vector such that the determinant of the n × n matrix
formed by x1, . . . , xn−1, x is 1. Each dxi is an integration over Rn, of course, and each dti
is an integration over R. ζ(s) is the Riemann zeta function.

One can show that the integral in (1) equals

∫
∆

n−1∏
i=1

Sn+1−i(ri)r
n−i
i dri

where the domain of integration ∆ equals

∆ = {(r1, . . . , rn−1) : ηri ≤ ri+1 for i = 1, . . . n− 1}
1
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(we understand rn := (r1 . . . rn−1)−1), and Sj(x) is the surface area of a sphere in Rj of
radius x. Therefore we can rewrite (1) as

(2)

n∏
j=2

Sj(1)

ζ(j)

∫
∆

n−1∏
i=1

r
2(n−i)
i dri.

Remark. One could arrive at the same formula (2) by using the Iwasawa decomposition of
SLnR and the expression for µ with respect to this decomposition. With this approach,
we understand (2) as the measure of a Siegel set in SLnR.

We reduced the problem to bounding

(3)

∫
∆

n−1∏
i=1

r
2(n−i)
i dri

from both sides. For the lower bound, first rewrite (3) as
(4)∫ ∞
rn−1=0

∫ η−1rn−1

rn−2=0

. . .

∫ η−1r3

r2=0

∫ min(η−1r2,η
−1(r2n−1rn−2...r2)−1)

r1=0

r
2(n−1)
1 r

2(n−2)
2 . . . r2

n−1dr1 . . . drn−1.

By using ηri ≤ ri+1 repeatedly we find that

r2 ≤ η−n+2rn−1, η
1
2n

2− 5
2n+5r1−n

n−1 ≤ (r2
n−1rn−2 . . . r2)−1.

Hence by solving

η−n+2rn−1 ≤ η
1
2n

2− 5
2n+5r1−n

n−1

for rn−1, we find a number α < 1 such that whenever rn−1 < α,

r2 ≤ (r2
n−1rn−2 . . . r2)−1

holds within the implied domain of the integration above. We could take α = η
1
2n−

3
2 , for

example.
Now (4) is the sum of two terms

(5)

∫ α

rn−1=0

∫ η−1rn−1

rn−2=0

. . .

∫ η−1r3

r2=0

∫ η−1r2

r1=0

r
2(n−1)
1 r

2(n−2)
2 . . . r2

n−1dr1 . . . drn−1

and
(6)∫ ∞
rn−1=α

∫ η−1rn−1

rn−2=0

. . .

∫ η−1r3

r2=0

∫ min(η−1r2,η
−1(r2n−1rn−2...r2)−1)

r1=0

r
2(n−1)
1 r

2(n−2)
2 . . . r2

n−1dr1 . . . drn−1.

Clearly (6) is nonnegative, so (5) yields a lower bound on (3), which equals

η−
1
6 (4n3−9n2−n+6)αn

2−1

(n2 − 1)(n2 − 22) . . . (n2 − (n− 1)2)
.

With the chosen value of α above, this becomes

η−
1
6 (n3+2n−3)

(n2 − 1)(n2 − 22) . . . (n2 − (n− 1)2)
.

It remains to give an upper bound of (3). We will temporarily use the notation∮ b

a

f(x)dx =

{∫ b
a
f(x)dx if a ≤ b

0 if a > b.
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We can rewrite (3) as∫ ∞
r1=0

∫ ∞
r2=ηr1

. . .

∫ ∞
rn−2=ηrn−3

∮ (ηr1...rn−2)−
1
2

rn−1=ηrn−2

r
2(n−1)
1 . . . r2

n−1dr1 . . . drn−1.

It is necessary to circle the last integral because ηrn−2 ≤ rn−1 and rn ≥ ηrn−1(⇔
(ηr1 . . . rn−2)−

1
2 ≥ rn−1) must be satisfied simultaneously for (r1, . . . , rn−1) to be an

element of ∆.
For the last integral to be nontrivial, ηrn−2 ≤ (ηr1 . . . rn−2)−

1
2 must hold, which is

equivalent to rn−2 ≤ (η3r1 . . . rn−3)−
1
3 . Hence (3) equals∫ ∞

r1=0

∫ ∞
r2=ηr1

. . .

∮ (η3r1...rn−3)−
1
3

rn−2=ηrn−3

∫ (ηr1...rn−2)−
1
2

rn−1=ηrn−2

r
2(n−1)
1 . . . r2

n−1dr1 . . . drn−1.

Again for the second last integral to be nontrivial, ηrn−3 ≤ (η3r1 . . . rn−3)−
1
3 must hold,

which is equivalent to rn−3 ≤ (η6r1 . . . rn−4)−
1
4 . Repeating this process, we conclude that

(3) equals∫ η−
n−1
2

r1=0

. . .

∫ η−
i
2 (r1...rn−i−1)

− 1
i+1

rn−i=ηrn−i−1

. . .

∫ (ηr1...rn−2)−
1
2

rn−1=ηrn−2

r
2(n−1)
1 . . . r2

n−1dr1 . . . drn−1.

This integral is bounded from above by∫ η−
n−1
2

r1=0

. . .

∫ η−
i
2 (r1...rn−i−1)

− 1
i+1

rn−i=0

. . .

∫ (ηr1...rn−2)−
1
2

rn−1=0

r
2(n−1)
1 . . . r2

n−1dr1 . . . drn−1,

which can be computed by elementary means, and equals

η−
1
6 (n3+2n−3)

3 · . . . (i+ 1 + 1/i) . . . (n+ 1/(n− 1))
.

Summarizing our results so far,

Theorem 1. The average number of Siegel bases is
n∏
j=2

Sj(1)

ζ(j)
· C · η− 1

6 (n3+2n−3),

where C is some constant between
∏n−1
i=1 (n2 − i2)−1 and

∏n−1
i=1 (i+ 1 + 1/i)−1.

Average number of LLL bases. In this section, we will use Theorem 1 to approximate
the average number of the real LLL bases. The idea is simple: since Theorem 1 gives us
an estimate on the measure of a Siegel set of Xn = SLnZ\SLnR, we will approximate the
set of all LLL bases by Siegel sets and use that estimate.

Let’s start with a description of the approximation. Choose 0 ≤ δ0 < . . . < δk ≤ 1/2

and a function σ from {1, . . . , n − 1} to {0, . . . , k − 1}, and define ηi =
√

1− δ2
i . We

say x1, . . . , xn ∈ Rn form a (lower) approximate LLL—aLLL for short—basis with factor
(ηi, δi, σ) if the following conditions are satisfied:

(i) det(x1 . . . xn) = 1.
(ii) |µi,j | ≤ 1/2 for all j < i− 1, where µi,j := 〈xi, x∗j 〉/‖x∗j‖2.
(iii) |µi+1,i| ∈ [δσ(i), δσ(i)+1].
(iv) ησ(i)‖x∗i ‖ ≤ ‖x∗i+1‖ for all i = 1, . . . , n− 1.
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We will let δi = i/2k unless otherwise mentioned. It is easy to see that

(7)
∑
σ

(the average number of aLLL bases with factor (ηi, δi, σ)),

where σ runs over all functions from {1, . . . , n − 1} to {0, . . . , k − 1}, approaches the
average of LLL bases from below as k →∞.

By a slight modification of the proof of Theorem 1, we can prove that the summand in
(7) is bounded from below by

(8)

n∏
j=2

Sj(1)

ζ(j)
· 1

kn−1

∫ α

rn−1=0

. . .

∫ η−1
σ(i)

ri+1

ri=0

. . .

∫ η−1
σ(1)

r2

r1=0

r
2(n−1)
1 . . . r2

n−1dr1 . . . drn−1,

where α = (ησ(1)η
2
σ(2) . . . η

n−2
σ(n−2))

1
n−1 η

− 1
n+1

σ(n−1) this time.

The integral in (8) is equal to

n−1∏
i=1

(n2 − i2)−1 ·
n−2∏
i=1

η
−i(n−i−1)
σ(i) · η−(n−1)

σ(n−1) .

Therefore (7) is bounded from below by

n∏
j=2

Sj(1)

ζ(j)
·
n−1∏
i=1

(n2 − i2)−1
∑
σ

1

kn−1

n−2∏
i=1

η
−i(n−i−1)
σ(i) · η−(n−1)

σ(n−1) .

We notice that the summation above is a product of Riemann sums

k−1∑
j=0

1

k
η
−i(n−i−1)
j =

k−1∑
j=0

1

k

√
1−

(
j

2k

)2
−i(n−i−1)

for i = 1, . . . , n− 2, and

k−1∑
j=0

1

k

√
1−

(
j

2k

)2
−(n−1)

.

Therefore, taking k →∞, we have proved

Theorem 2. The average number of the LLL bases of an n-dimensional lattice is bounded
from below by

(9)

n∏
j=2

Sj(1)

ζ(j)
·
n−1∏
i=1

(n2 − i2)−1 ·
n−2∏
i=1

∫ 1
2

− 1
2

√
1− x2

−i(n−i−1)
dx ·

∫ 1
2

− 1
2

√
1− x2

−(n−1)
dx.

The upper bound can be obtained similarly, and equals

(10)

n∏
j=2

Sj(1)

ζ(j)
·
n−1∏
i=1

a−1
i

∫ 1
2

− 1
2

√
1− x2

−i
∑n−1
j=i

aj
j+1

dx

where ai = i+ 1 + i−1.

Distribution of LLL bases. Recall that (7) is bounded from below by a constant (de-
pending on n) times
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(11)
∑
σ

1

kn−1

n−1∏
i=1

η
−α(i)
σ(i) ,

where the summation is taken over all maps σ : {1, . . . , n− 1} → {0, . . . , k − 1}, and

(12) α(i) :=

{
i(n− i− 1) if i = 1, . . . , n− 2

n− 1 if i = n− 1.

The aim of this section is to show that, for all sufficiently large n and a suitable choice
of k (k increasing with n), the main contribution to (11) comes from the single summand
with σ(i) = k − 1 for all i. In fact, the contributions from all the other σ’s combined are
arbitrarily small in proportion to the main term.

By combining this result and its “upper” approximate LLL counterpart (obtained by
practically the same argument), this shows that for almost all LLL bases {x1, . . . , xn−1},
the absolute value of µi+1,i = 〈xi+1, x

∗
i 〉/‖x∗i ‖2 is near 1/2 for all i. A little more thoughts

reveal that for almost all such LLL bases ‖x∗i+1‖/‖x∗i ‖ is near
√

3/2 as well. Therefore we
conclude that for almost all LLL bases the projections of xi and xi+1 onto the orthogonal
complement of span(x1, . . . , xi−1) have about the same lengths and form a 60 degree angle.

Let 0 ≤ a < 1. Observe that for na ≤ i ≤ n− na, α(i) = O(n1+a). For other values of
i, α(i) ≥ O(n).

There are less than kn−1 σ’s for which σ(i) < k − 1 for at least one na ≤ i ≤ n − na.
The ratio of the contributions from these σ’s to our proclaimed main term is at most

(13) kn−1

(
ηk−2

ηk−1

)−n1+a

.

And there are less than k2na σ’s for which σ(i) = k− 1 for all na ≤ i ≤ n− na but not
all σ(i) equals k− 1. The ratio of the contributions from these σ’s to the main term is at
most

(14) k2na
(
ηk−2

ηk−1

)−n
.

It therefore suffices to show that for a judicious choice of k and a, both (13) and (14)
converge to zero as n→∞. Indeed, since

ηk−2

ηk−1
=

√
1 +

2k − 3

3k2 + 2k − 1

and so (
ηk−2

ηk−1

)3k

→ e as k →∞,

(13) and (14) are close to, respectively,

kn−1e−
1
3n

1+a/k, k2nαe−
1
3n/k.

Setting k = n1/3 and a = 1/2, we see that (13) and (14) are close to, respectively,

n
1
3 (n−1)e−

1
3n

1+1/6

, n
2
3n

1/2

e−
1
3n

2/3

,

both of which converge to zero as n→∞, as desired.


